

PROCESSING OF PETHA

AATMANIRBHAR BHARAT

PM Formalisation of Micro Food Processing Enterprises Scheme (PM FME Scheme)

• Soft & translucent candy made from winter melons (ash gourd).

PETHA

- Considered the purest kind of sweet. Trademark of Agra City
- Originated in Mughal Empire under Shah Jahan's royal kitchen.
- About 1500 cottage units produce 700-800 tons of petha daily
- Very popular in Agra, Mathura and many other parts of U.P.
- Prepared by boiling Ash gourd and then processing it in syrup

HISTORY OF PETHA....

- It is as old as the Taj Mahal
- Initially prepared for the workers who constructed the memorial.
- Earliest instances of petha were found in the royal kitchens of Mughal Emperor Shah Jahan.

PETHA FRUIT

- Benincasa hispida (ash gourd) also called wax gourd.
- Covered in fuzzy coating when immature
- Coating gets converted into waxy layer when ripens.
- Extensively grown in U.P, Kerala & Tamil Nadu
- Native to Java and Japan

- Ash gourd is also Called
 - Winter melon (English),
 - Petha, Petha kaddu, Kumhera (Hindi),
 - Kohla (Marathi),
 - Neer poosanikai (Tamil),
 - Kumbalanga (Malayalam),
 - Boodida Gummadikaaya (Telegu),
 - Budekumbalakayi, Boodu gumbala (Kannada),
 - Kumra, Chalkumra (Bengali), and
 - Komora (Assamese).

VARIETIES OF ASH GOURD

Major varieties of ash gourd in India are

- Pusa Ujjwal
- Kashi Ujawal
- ✤ CO-1
- ✤ CO-2
- APAU Shakthi
- ✤ MAH 1
- ✤ IVAG.502

AVERAGE NUTRITIONAL COMPOSITION OF PETHA FRUIT

Nutritional value per 100 g	
Energy	54 kJ (13 kcal)
Carbohydrates	3 g
Dietary Fiber	2.9g
Fat	0.2 g
Protein	0.4 g
Thiamine (Vit B ₁)	0.04 mg (3%)
Riboflavin (Vit B ₂)	0.11 mg (9%)
Niacin (Vit B ₃)	0.4 mg (3%)
Pantothenic Acid (Vit B_5)	0.133 mg (3%)
Vitamin B ₆	0.035 mg (3%)
Vitamin C	13 mg (16%)
Calcium	19 mg (2%)
Iron	0.4 mg (3%)
Magnesium	10 mg (3%)
Manganese	0.058 mg (3%)
Phosphorus	19 mg (3%)
Sodium	111 mg (7%)
zinc	0.61 mg (6%) ⁷

HEALTH BENEFITS OF PETHA FRUIT...

- Low calorific value
- Helps to keep body cool
- Reduces constipation problem
- Good detoxifying agent
- Controls high cholesterol
- Act as a blood coagulant

ASH GOURD MARKET IN AGRA

- Collected in *mandi* or vegetable wholesale markets
- Sources are either farmers or distributors.
- Price of ash gourd are decided on daily basis
- Mainly based on the auction for the whole batch of fruit
- Generally price can be Rs. 270-310 per mann (40kg) during peak season
- Price hiked up to Rs. 400-410 per mann due to panedemic

PRODUCT MARKET POTENTIAL

Agra's famous petha sweet industries as well as tourism, which went into near closure, are ecstatic.

As the Taj Mahal re-opens, the petha industry has greatly benefited.

Around 50 % of sales of Petha are due to agro-tourism.

The sellers, the processor, the distributor are all directly or indirectly linked to the Petha processing business and development.

About 1500 cottage units produce 700-800 tons of Petha daily.

Presently 15 varieties of petha are manufactured in India.

OTHER RAW MATERIALS..

SUGAR

- Important Raw material
- Give characteristic hard coating
- Provide sweet taste to petha
- Three types of sugar are used :
 - Refined Mill Sugar
 - Unrefined Sugar
 - Khandsari Sugar

LIME OR CHOONA

- Chemically known as Calcium carbonate
- Used for firming of processed ash gourd

SKIMMED MILK

- Used for cleaning of sugar syrup
- Separate impurities in the form of scum
- Bind with impurities in the boiling syrup

SODIUM HYDROSULPHITE (RANGKAT)

- Colourless or white crystalline powder
- Soluble in water
- Used as souring, buffering and chelating agent
- Make petha more crispy

COLORING & FLAVORING AGENTS

- Provide characteristic color to petha
- Vary according to the petha variety
- Kesari powder IH 9140, Apple green Powder
 IH 8925, Orange red powder IH 7802 used in petha industry

WATER STANDARDS FOR PETHA MAKING...

Agra Groundwater Status is as:

- 7.2 for pH,
- 450 mg/L for total alkalinity,
- 7 NTU for turbidity,
- 425 mg/L for total hardness,
- 700 mg/L for chlorides and
- 1200 mg/L for total dissolved solids

PROCESSING OF ASH GOURD INTO PETHA

PREPARATION OF SUGAR SYRUP

- Shifting of sugar for the removal of dirt
- Mixing of water and sugar with continuous stirring
- Addition of hydro and alum to clear the syrup from scum layer
- Scum Removal using ladle
- Final concentration of syrup is 65-70° brix
- Collection in holding tank

PROCESSING STEP

- Pre-processing step
 - Preparation of sugar syrup
- Processing Steps
 - Washing
 - Drying
 - Cutting
 - Pulping
 - Slicing
 - Peeling
 - Molding and Cutting
 - Soaking
 - Boiling
 - Cooling
 - Packaging

WASHING AND DRYING

- Washing is done with groundwater
- It removes any dirt or extraneous matter.
- Spoiled, damaged and over ripened fruits also discarded
- Waste fruits further used for cattle feed
- Drying is done to remove the surface water from fruit
- Most preferable method is Sun Drying

CUTTING

- Primarily, fruit are cuts into halves to check internal spoilage.
- Further slicing is done.
- A long sharp blade knife is used for cutting of fruits
- Gloves are used to maintain hygiene and for proper grip.
- It also protects skin from irritating compounds

PULPING

- Pulp is obtained from inside the fruit after cutting
- Pulp contains seeds
- Pulping is done to separate the seeds
- Seed Extraction is done
- Sun Drying after extraction
- Uses
 - Seeds are used for next crop
 - As Cashew substitute in gravies

Pulp (With seeds)

Seeds extracted (still wet)

- Pulping machine is used to separate seeds
- Mashing is done through stainless steel blades
- Extraction due to gravitational force
- Collection of seeds at the bottom of the machine

Pulping Machine

SLICING

- Cut the ashgourd into small pieces
- Shape of slice varies with the type of petha
- 4 longitudinal halves for dry sada (plain) petha
- Each longitudinal half into triangles for pan petha (Beetle leaf type Petha)

• Sharp edged knife is used for slicing

PEELING

- Peeling is to remove green residue
- It imparts off flavor to the petha
- Contains toxin and harmful components
- Sharp edge knife is used for peeling
- Peels further used for cattle feed or composting purpose

MOLDING AND CUTTING

- Molding is done for proper shaping of petha
- Pieces are cut into desired shapes
- Simple cutters and/or pokers are used
- Pricking ensures proper seepage of sugar syrup
- Extra slices are used in making of *Gulaab Lacchha petha*
- Pieces are grated to form strands (*Lacchha*)
- Addition of rose flavor and red color

Cutting Machine

Strands (Lacchha)

SOAKING

- Soaking in Lime water done for 2-3 hours
- Done to provide firmness to pieces
- Lime water changed 3-4 times

BOILING

- First boiling in water for softening of pieces
- It removes excess lime and vegetable odor
- Cleaning of surface for proper syrup absorption
- Further boiling is done in sugar syrup
- Proper seepage of sugar in pieces
- Addition of flavor and color, if needed

Boiling in water

Boiling in syrup²⁸

COOLING

FOR DRY PETHA

- Removal of excess sugar syrup prior to cooling
- Spotted ladles and baskets are used
- Transfer into trays
- Hardening of syrup on the outer surface of petha
- Transfer at wooden racks for cooling
- Cooling done at room temperature

FOR WET ANGOORI PETHA

- Two types of wet angoori petha are made:
 - Small size pieces (Cheery & Kesar petha)
 - Large size pieces (Orange Angoori petha)
- For small size, pieces are cooled in vessel with sugar syrup
- For large size, pieces are transferred in shallow trays
- Cooling at room temperature

Orange Angoori Petha

Cherry Angoori

Kesar Petha

PACKAGING OF PETHA

- Dry petha is packed in cardboard boxes
- Layer of polyethylene placed at the bottom and top of petha pieces

Dry petha

- Wet petha is packed polypropylene pouches with sugar syrup
- Air removal from pouches is done before final sealing
- Refrigerated storage preferred

Wet Petha

FACTORS AFFECTING SHELF LIFE OF PETHA

- Storage area should be properly ventilated
- Direct exposure to sunlight should be avoided
- Relatively low RH (20-25%) required
- Refrigeration temperature is preferred for wet petha
- Proper sanitation in storage area
- Care in post process handling

SHELF LIFE OF PETHA

Storage Type	Wet (Angoori)Petha	Dry (Sada) Petha
At Room Temperature	20-25 days	30-40 days
Under Refrigeration	30-35 days	45-50 days

EQUIPMENTS USED

COOKING VESSEL

- Cast iron vessel
- Hemispherical shape
- Average volume ranges from 50-150 liters
- Used in boiling of water and sugar syrup

Cooking Vessel

POKER

- Can be hand-held or automatic
- Used for pricking of petha pieces
- Helps in proper seepage of sugar syrup

Poker (Hand held or Automatic)

EQUIPMENTS USED

PETHA CUTTER

- One sided sharp edge cutters are used
- Mostly triangular and circular in shape
- Shard edge knife can also be used

HEATING ELEMENT

- Traditionally coal were used
- LPG system is used for heating nowadays
- More efficient, less input required

Petha Cutter

LPG cylinders

EQUIPMENTS USED

HOLDING VESSELS

- Can be trays, silos etc.
- Used to store the sugar syrup &/or processed petha pieces

Types of Holding vessels

LIME PIT

- Depostion of lime cake
- Used in soaking of ash gourd pieces

OF FOOD PROCESSING INDUSTRIES GENERAL FAILURES & REMEDIES

S. No.	General Failures	Remedies
1.	Ball bearing failure of various machine	 Proper periodic lubrication of all bearings in various machines. Regular replacement of all bearing to prevent critical failures.
2.	Power Drive Overload	 Ensure proper weighing & metering specially in case of semi-automatic plant. Install warning sensor in buffer region of loading capacity to ensure efficient operation.
3.	Mechanical Key Failure	 Ensure that mechanical keys are replaced as per there pre-defined operational life. Prevent Overloading. 37

GENERAL FAILURES & REMEDIES

S. No.	General Failures	Remedies	
4.	Loss of Interface	This problem is dominant in newly established	
		automatic plant, one must learn to maintain rules in	
		plant & ensure no employee goes near transmission	
		lines, unless authorized.	
		➢Provide proper physical shielding for the	
		connections.	
5.	Improper Boiling	> This basically arises due scaling within cooking	
		kettle due to use of hard water.	
		> This problem is resolved by using appropriate	
		38 descaling agent.	

NUTRITIONAL INFORMATION

Principle	Nutrient Value	Percentage of RDA
Energy	13 Kcal	1%
Carbohydrates	Зg	2.3%
Protein	0.4 g	<1%
Total Fat	0.2 g	1%
Cholesterol	0 mg	0%
Dietary Fiber	2.9 g	7.6%
Vitamins		
Folates	5 µg	1.25%
Niacin	0.400 mg	2.5%
Pantothenic acid	0.133 mg	2.5%

NUTRITIONAL INFORMATION

Principle	Nutrient Value	Percentage of RDA
Pyridoxine	0.035 mg	3%
Riboflavin	0.11 mg	1%
Thiamin	0.04 mg	3.3%
Vitamin-A	0 IU	0%
Vitamin-C	13 mg	14%
Electrolytes		
Sodium	6 mg	<0.5%
Potassium	111 mg	2.4%
Minerals		
Calcium	19 mg	2%
Iron	0.4 mg	5%
Magnesium	10 mg	2.5%
Manganese	0.058 mg	2.5%
Phosphorus	19 mg	2.5%
Selenium	0.2 µg	<1%
Zinc	0.61 mg	6%

EXPORT POTENTIAL & SALES ASPECT

- Agra's petha is so famous that varieties are available in most of the Indian markets.
- \succ The Agra Petha industry produces 700 to 800 tons of petha every day.
- it has over 50,000 employees in over 700 small and large production plants.
- One of the very famous and most reckoned Panchhi Petha House is the oldest chain of manufacturing and exporting petha in the city.
- The preservation of variety and choice of flavor as a petha criterion is the most common export commodity for countries around the world. Research and innovations are required in the petha industry.

For More details Contact:

National Institute of Food Technology and Entrepreneurship and Management Ministry of Food Processing Industries Plot No. 97, Sector-56, HSIIDC, Industrial Estate, Kundli, Sonipat, Haryana-131028

Website: http:www.niftem.ac.in

Email: pmfmecell@niftem.ac.in Call: 0130-2281089