

पीएम सूक्ष्म खाद्य प्रसंस्करण उद्यम औपचारिककरण (पीएमएफएमई) योजना

पुस्तिका- उड़द आधारित उत्पाद

AATMANIRBHAR भारत

राष्ट्रीय खाद्य प्रौद्योगिकी उद्यमिता और प्रबंधन संस्थान यूजीसी अधिनियम, 1956 की धारा 3 के तहत मानित विश्वविद्यालय (डी-नोवो श्रेणी) खाद्य प्रसंस्करण उद्योग मंत्रालय, भारत सरकार, सोनीपत, हरियाणा, भारत के अंतर्गत एक स्वायत्त संस्थान

> वेबसाइट: www.niftem.ac.in ईमेल: pmfmecell@niiftem.ac.in कॉल करें: 0130-2281089

विषयसूची

पृष्ठ सं
अध्याय १ परिचय
1.1 परिचय4
1.2 बढ़ती परिस्थितियाँ5
1.3 फसल की स्थिति5
अध्याय दो : उड़द की फली की किस्में
2.1 राज्यानुसार संस्तुत किस्में
अध्याय ३ : पोषण संबंधी संरचना उड़द बीन
3.1 पोषण संबंधी रचना उड़द बीन
अध्याय ४: उड़द के बीज का प्रसंस्करण
4.1 उड़द की फलियों से भुजिया बनाना9
4.2 उड़द की फलियों से पापड़ बनाना11
4.3 उड़द की फलियों से मसाला बुराड़ी का विनिर्माण
अध्याय 5: उड़द बीन प्रसंस्करण के लिए उपकरण
5.1 वजनी मशीन15
5.2 छलनी
5.3 आटा मेकर
5.4 एक्सट्रूडर मशीन16
5.5 शीटिंग और कटिंग मशीन
5.6 फ्राईर
5.7 पापड़ सुखाने की मशीन18
अध्याय ६: पैकेजिंग
6.0 पैकेजिंग
6.1 पैकेजिंग की आवश्यकता19
6.2 पैकेजिंग के प्रकार
6.3 मोठ बीन उत्पादों की पैकेजिंग20

6.4 पैकेजिंग में कुछ आधुनिक विकास	
6.5 लेबिलंग23	
अध्याय ७: FSSAI पंजीकरण	
7.1 भुजिया के लिए एफएसएसएआई (FSSAI) पंजीकरण25	5
7.2 पापड़ के लिए एफएसएसएआई पंजीकरण25	5
7.3 खाद्य निर्माता / प्रोसेसर / हैन्डलर के लिए स्वच्छता और स्वास्थ्य संबंधी आवश्यकताएँ	

संकेताक्षर

1	पीईटी (PET)	पॉलीथीन टेरिफ्थेलैट
2	एलडीपीई (LDPE)	लो घनत्व पोलीथाईलीन
3	बीआईएस (BIS)	भारतीय मानक ब्यूरो
4	एफएसएसएआई	भारतीय खाद्य सुरक्षा और मानक प्राधिकरण
	(FSSAI)	

1.1 प्रस्तावना

वैज्ञानिक नाम: विग्ना मुंगो

परिवार:fabaceae

साधारण नाम: काला चना, उड़द की फलियाँ, उलुन्दु परप्पा, मीनपा पप्पू

मूल: दक्षिण एशिया

काला चना देश के लगभग हर क्षेत्र में उगाई जाने वाली महत्वपूर्ण दलहनी फसलों में से एक है। इसे उड़द की दाल भी कहा जाता है, जिसका सेवन विभिन्न प्रकार से किया जाता है, जैसे दाल, पापड़, बदी, नमकीन, आदि। काला चना बहुत ही पौष्टिक होता है, इसलिए यह विशेष रूप से दुधारू पशु के लिए चारे के रूप में भी उपयोग किया जाता है। इसमें लाइसिन की उच्च मात्रा होती है जो इसे संतुलित मानव पोषण के लिए चावल का उत्कृष्ट पूरक बनाती है।

1.2 बढ़ती परिस्थितियाँ

उड़द की फलियाँ ज्यादातर उष्णकिटबंधीय क्षेत्र में उगाई जाती हैं, जिसमें सबसे अच्छी वृद्धि के लिए गर्म और आर्द्र जलवायु की आवश्यकता होती है। उत्तर भारत में उड़द की फलियों की खेती ज्यादातर बारिश और गर्मी के मौसम में की जाती है, भारत के दिक्षणी और मध्य क्षेत्र में इसकी खेती सर्दियों और बरसात के मौसम में की जाती है जबिक भारत के पूर्वी हिस्से में सर्दियों में इसकी खेती की जाती है।

1.3 फसल की स्थिति

उड़द की फिलयों की खेती लगभग 31.29 लाख हेक्टेयर भूमि पर की जाती है और भारत में इसका कुल उत्पादन 2012-17 के दौरान 18.29 लाख टन दर्ज किया गया। इसमें से उत्तर प्रदेश भारत में उड़द की फिलयों का सबसे बड़ा उत्पादक है, जो 17.88% है, इसके बाद आंध्र प्रदेश 16.75% है। उच्चतम उपज बिहार राज्य (898 किलोग्राम / हेक्टेयर) और उसके बाद सिक्किम (895 किलोग्राम / हेक्टेयर) और झारखंड (890 किलोग्राम / हेक्टेयर) में दर्ज की गई, राष्ट्रीय उपज औसत (585 किलोग्राम / हेक्टेयर) थी।

<u>अध्याय दो</u>

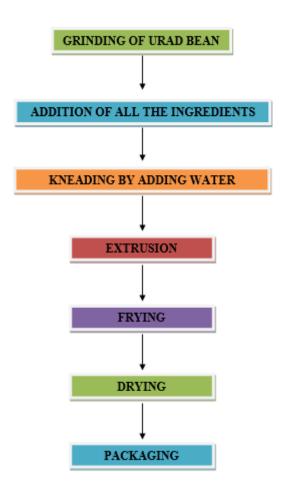
2.0 उड़द की फली की किस्में

2.1 राज्यानुसार संस्तुत किस्में:

राज्य	किस्में		
	खरीफ	रबी	वसंत ग्रीष्म ऋतु
आंध्र प्रदेश	पंत उरद -31, IPU 2- 43, LBG 685, LBG 625	टीयू 94-2, एलबीजी 623, एलबीजी 709, एलबीजी 611	टीयू 94-2, एलबीजी 623, एलबीजी 709, एलबीजी 611
असम	PU-30, WBU -108, IPU 94-1 (उत्तरा)	-	-
बिहार और झारखंड	पंत उरद 31, डब्ल्यूबीयू 108, आईपीयू 94-1 (उत्तरा), बिरसा उरद 1, PU-30	-	पंत उरद 31, WBU-109, KU 91- 2 (अज़ाद उरद 1)
गुजरात	केयू 96-3, टीपीयू -4, AKU-4 (मेलघाट), GU-1, KUG-479, UH 01, मैश -414	-	-
हरियाणा	केयू -300 (शेखर 2), आईपीयू 94- 1 (उत्तरा)	-	-
हिमाचल प्रदेश	पंत उरद 31, पंत उरद 40	-	-
कर्नाटक	IPU 02-43, WBU- 108, केयू- 301, LBG 402	IPU 2-43, WBU- 108, केयू-301	-
एमपी और सीजी	पंत उरद -30, जेयू -3, केयू 96-3, टीपीयू -4, जेयू -2, खरगोन -3	पंत उरद 31	पंत उरद 31
महाराष्ट्र	केयू 96-3, टीपीयू 4, AKU-4 (मेलघाट), AKU-15	-	-
ओडिशा	IPU 02-43, WBU- 108, केयू 301	B-3-8-8, OBG-17, मैश 338	बी 3-8-8, ओबीजी 17, मैश 338

पंजाब	WBU 108, IPU 94- 1 (उत्तरा), मैश 338, मैश 414	-	केयू 300 (शेखर) 2), केयूजी 479
राजस्थान Rajasthan	पंत उरद -31, डब्ल्यूबीयू 108, आईपीयू 94-1 (उत्तरा)	-	केयू 300 (शेखर) 2), केयूजी 479
यूपी और उत्तराखंड	पंत उरद -40, WBU- 108, IPU 94-1 (उत्तरा)	-	केयू 300, डब्ल्यूबीयू 109, केयू 91 (आजाद) उरद 2) कुग -479, नरेंद्र उरद 1
तमिलनाडु	IPU 02-43, वामन -4, वम्बन -7	वंबन -3, टीयू 94- २	वंबन 3, टीयू 94- 2, वामन 5, वम्बन 1
पश्चिम बंगाल	पंत उरद 31, डब्ल्यूबीयू 108, आईपीयू 94-1	पंत उरद -31, डब्ल्यूबीयू- 190, केयू 92-	पंत उरद 31, डब्ल्यूबीयू 109, केयू

3.1 पोषण संबंधी संरचना (उरद बीन)

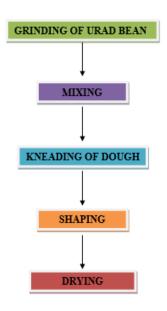

S. No.	विशेष	मात्रा	
1	<u>ক</u> ৰ্जা	341 किलो कैलोरी	
2	कार्बोहाइड्रेट	58.99 जी	
3	प्रोटीन	25.21 ग्राम	
4	कुल वसा	1.64 ग्राम	
5	फाइबर आहार	18.3 ग्रा	
6	फोलेट्स	216 मिग्रा	
7	नियासिन	1.447 मिग्रा	
8	पैंथोथेटिक अम्ल	0.906 मि.ग्रा	
9	ख़तम	0.281 मिग्रा	
10	राइबोफ्लेविन	0.254 मि.ग्रा	
11	थायमिन	0.273 मिग्रा	
12	विटामिन ए	23 IU 1%	
13	सोडियम	38 मिलीग्राम	
14	पोटैशियम	983 मिलीग्राम	
15	कैल्शियम	138 मिग्रा	
16	तांबा	0.981 मिग्रा	
17	लोहा	7.57 मि.ग्रा	
18	मैगनीशियम	267 मिग्रा	
19	फास्फोरस	फास्फोरस 379 मिलीग्राम	

* स्रोत: यूएसडीए के अनुसार

जैसा कि हमने पहले चर्चा की है कि उड़द की फलियों का सीधे तौर पर सेवन किया जाता है या इससे बनने वाले उत्पादों जैसे पापड़, बदी, भुजिया आदि का प्रसंस्करण किया जा सकता है।

4.1 उड़द की फलियों से भुजिया बनाना

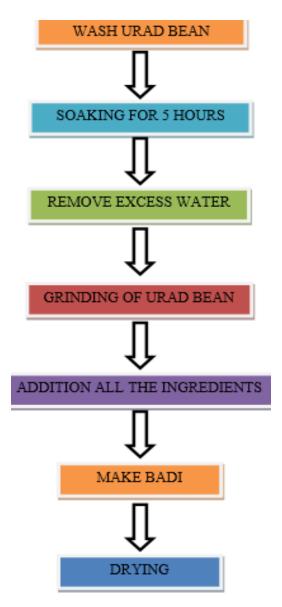
उरद की फलियों को भुजिया / स्नैक्स बनाने के लिए उपयोग किया जाता है, क्योंकि इसके पोषण लाभों के साथ-साथ इसका स्वाद भी अच्छा होता है। उड़द की फलियों से भुजिया बनाना निम्न चरणों में शामिल है:


4.1.1 उड़द की फलियों को पीसना (Grinding of urad bean): बीन को पीसना मुख्य रूप से पीसने वाली मशीन की मदद से किया जाता है और इसे आसानी से पीसना चाहिए ताकि भुजिया की बनावट अच्छी गुणवत्ता की हो।

- **4.1.2 सामग्री का जोड़** (Grinding of urad bean): नमक और मसाले जैसी सामग्री उचित मात्रा में डाली जाती है। इन सामग्रियों को जोड़ते समय FSSAI के उचित विनियमन का पालन किया जाना चाहिए।
- **4.1.3 गूंधना** (**Kneading**): यह आटा बनाने के लिए किया जाता है, उड़द की फलियों के पाउडर को अच्छी तरह से गूंध लेना चाहिए और इस प्रक्रिया के दौरान आटा में पानी के अलावा सावधानी से निगरानी की जानी चाहिए ताकि उचित मात्रा में नमी मौजूद हो। पानी का कम उपयोग या अधिक उपयोग आटा की गुणवत्ता को प्रभावित करता है।
- **4.1.4 एक्सट्रूज़न** (Extrusion): गूंधने के बाद, आटा को एक उपकरण के माध्यम से पारित किया जाता है। जिसे एक्सट्रूडर कहा जाता है। आटा को उचित आकार में काटने के लिए बाहर निकालना किया जाता है।
- 4.1.5 तलना (Frying): एक्सट्रूडर से प्राप्त उत्पाद को तेल में गहराई से तला जाता है।
- **4.1.6 सुखाने** (**Drying**): यह तापमान f तले हुए उत्पाद को कम करने के लिए किया जाता है और साथ ही सुखाने की प्रक्रिया भी एक ही समय में कुछ मात्रा में तेल निकाल देती है।
- 4.1.7 पैकेजिंग (Packaging): सुखाने के बाद, उत्पादों को बाजार में बेचने के लिए पैकेजिंग की जाती है।

4.2 उड़द की फलियों से पापड़ का निर्माण

पापड़ एक अच्छा भूख बढ़ाने वाला और पाचन का एक स्रोत है। भुना या भूना हुआ पापड़ मुंह और गले से फैटी सामग्री को अवशोषित करने में मदद करता है। पापड़ को मध्यम अनुपात में खाया जाना चाहिए; अन्यथा यह अम्लता का कारण बन सकता है। पापड़ सोडियम में बहुत अधिक है, इसलिए उच्च रक्तचाप से ग्रस्त लोगों के लिए उचित नहीं है। पापड़ दाल से बनता है, इसलिए प्रोटीन और आहार फाइबर से भरपूर लस से मुक्त होता है।


4.2.1 उड़द की फलियों की सफाई: उच्च मात्रा और आटे की अच्छी गुणवत्ता प्राप्त करने के लिए उड़द की फलियों को पहले साफ किया जाता है। सफाई के उद्देश्य के लिए ज्यादातर री-स्क्रीनिंग करने वाले एयर-स्क्रीन क्लीनर और रील स्क्रीन क्लीनर का उपयोग किया जाता है। घूमने वाले एयर क्लीनर में दो स्क्रीन होते हैं, जिनमें छिद्र का अलग-अलग आकार होता है, जो कि हल्के पदार्थों जैसे धूल, पत्तियों, भूसी आदि के पृथक्करण के लिए उपयोग किए जाते हैं। रील स्क्रीन क्लीनर में 2-4 गोल डिब्बे होते हैं, जिनका छिद्र आकार अलग-अलग होता है, जो 5-7.5 मिमी व्यास शाफ्ट पर फिट होते हैं। गोल स्क्रीन ड्रम 5-35 आरपीएम पर घूमता है।

4.2.2 सुखाने: उड़द की फलियों को सुखाने से नमी कम होती है। सुखाने की प्रक्रिया को सूर्य के माध्यम से या यंत्रवत् रूप से किया जा सकता है। सूर्य सुखाने की प्रक्रिया में आमतौर पर 1-6 दिन लगते हैं जहाँ उड़द

की फलियाँ 5 से 7.5 cm मोटी परत में फर्श / छत पर फैल जाती हैं और इसके बाद मैनुअल सरगर्मी होती है। मैकेनिकल सुखाने या तो बैच प्रकार या निरंतर प्रवाह प्रकार 600-1200 .C से तापमान रेंज में किया जाता है।

- **4.2.3 डी-हिलांग:** सीड-कोट को हटाने के लिए डी-हिलांग ऑपरेशन किया जाता है जो टैनिन और अघुलनशील फाइबर जैसे पोषण-विरोधी कारकों को कम करने में मदद करता है, जिससे पोषण की गुणवत्ता, प्रोटीन की पाचनशक्ति, बनावट, स्वाद आदि में वृद्धि होती है।
- **4.2.4 उड़द की फलियों को पीसना** : बीन को पीसना मुख्य रूप से पीसने की मशीन की मदद से किया जाता है और इसे आसानी से पीसना चाहिए ताकि पापड़ की बनावट अच्छी गुणवत्ता की हो।
- 4.2.5 मिश्रण: पीसने के बाद, पाउडर से प्राप्त पाउडर को पाउडर के समान बनाने के लिए सभी आवश्यक सामग्री के साथ ठीक से मिश्रित किया जाना चाहिए।
- 4.2.6 गूंधना:यह आटा बनाने के लिए किया जाता है, उड़द की फलियों के पाउडर को अच्छी तरह से गूंध लेना चाहिए और इस प्रक्रिया के दौरान आटा में पानी के अलावा सावधानी से निगरानी की जानी चाहिए तािक उचित मात्रा में नमी मौजूद हो। पानी का कम उपयोग या अधिक उपयोग आटा की गुणवत्ता को प्रभावित करता है।
- 4.2.7 आकार देना:पापड़ प्रेस मशीनरी संचालित है। पापड़ का आटा उड़द की दाल के आटे, नमक, कार्बोनेट्स, फ़ारेंसिक सामग्री और पानी से बनाया जाता है। आटे को प्रेस मशीन द्वारा 1 मिमी की मोटाई में शीट रूप में बनाया जाता है और मशीन द्वारा गोल आकार में काटा जाता है। दबाया हुआ गोलाकार आकार का पापड़ ड्रायर मशीन का उपयोग करके कमरे के तापमान पर 14-15% नमी के स्तर तक सूख जाता है।
- **4.2.8 पैकेजिंग:**14-15% नमी वाले पापड़ को हाथ से सील करने वाली मशीन का उपयोग करके पॉलिथीन शीट में पैक किया जाता है और अंतिम पैकेजिंग के बाद बाजार में भेजा जाता है

4.3 मसाला बड़ी का निर्माण :

5.0 उड़द बीन प्रसंस्करण के लिए उपकरण:

5.1 तौल मशीन :

उत्पाद की अच्छी गुणवत्ता प्राप्त करने के लिए, सभी सामग्रियों को डिजिटल तौल मशीन की सहायता से ठीक से तौला जाना चाहिए।

5.2 छानना:

इसका उपयोग उड़द की फलियों के छानने के लिए किया जाता है ताकि विनिर्माण के उद्देश्य से केवल महीन पाउडर का उपयोग किया जा सके। इसके बिना मोटा पाउडर इसमें मिल सकता है।

5.3 आटा मेकर:

आटा निर्माता का उपयोग आटा की तैयारी के लिए अधिक मात्रा में और कम समय में किया जाता है। आटा मेकर की सहायता से सभी सामग्री को एक समान रूप से मिला दिया जाता है।

5.4 एक्सटूडर मशीन:

इसका उपयोग आटे को मोटा और छोटे आकार में काटने के लिए किया जाता है जो तलने की प्रक्रिया के लिए उपयुक्त होगा।

5.5 शीटिंग और काटने की मशीन:

इसका इस्तेमाल पापड़ बेलने में और उसे उचित आकार से काटने में होता है

5.6 फ्रायर:

भुजिया के गहरे तलने के लिए फ्रायर का उपयोग किया जाता है।

5.7 पापड़ सुखाने की मशीन:

6.0 पैकेजिंग:

पैकेजिंग खाद्य निर्माण प्रक्रिया का एक महत्वपूर्ण हिस्सा है। यह खाद्य उत्पादों को भौतिक, रासायनिक, जैविक क्षित से बचाता है। पैकेजिंग के बिना, खाद्य प्रबंधन एक गन्दा, अक्षम और महंगा अभ्यास होगा और आधुनिक उपभोक्ता विपणन लगभग असंभव होगा। इस प्रकार खाद्य पैकेजिंग आधुनिक खाद्य उद्योग के केंद्र में है। पैकेजिंग इंस्टीट्यूट इंटरनेशनल ने पैकेजिंग को निम्नलिखित में से एक या अधिक कार्यों को करने के लिए लिपटे पाउच, बैग, बॉक्स, कप, ट्रे, कैन, ट्यूब, बोतल या अन्य कंटेनर फॉर्म में उत्पादों, वस्तुओं या पैकेजों के घेरे के रूप में परिभाषित किया: संरक्षण, संचार, उपयोगिता और प्रदर्शन। यदि डिवाइस या कंटेनर ने इनमें से एक या एक से अधिक कार्य किए, तो इसे एक पैकेज माना गया।

6.1 पैकेजिंग की आवश्यकता:

पैकेजिंग एक श्रृंखला कार्य करता है:

- 6.1.1 रोकथाम: किसी आधुनिक समाज में हर दिन कई अवसरों पर एक स्थान से दूसरे स्थान पर स्थानांतरित किए जाने वाले उत्पादों की असंख्यता से पर्यावरण को बचाने के लिए पैकेजिंग का नियंत्रण कार्य बहुत बड़ा योगदान देता है। दोषपूर्ण पैकेजिंग (या अंडर-पैकेजिंग) पर्यावरण के प्रमुख प्रदूषण का परिणाम हो सकता है।
- **6.1.2 संरक्षण :** पैकेज का प्राथमिक कार्य: इसकी सामग्री को बाहर से सुरक्षित रखना पर्यावरणीय प्रभाव जैसे कि जल, जल वाष्प, गैसें, गंध, सूक्ष्मजीव, धूल, झटके, कंपन और संपीड़ित बल।
- 6.1.3 सहिलयत: सुविधा बढ़ाने के लिए डिज़ाइन किए गए उत्पादों में खाना पकाने के लिए तैयार या ऐसे खाद्य पदार्थ खाने के लिए तैयार हैं, जिन्हें प्राथमिक पैकेज को हटाए बिना बहुत कम समय में गर्म किया जा सकता है। इस प्रकार, पैकेजिंग उपभोक्ता की सुविधा में मदद करता है। सुविधाजनक पैकेज बिक्री को बढ़ावा देते हैं।
- **6.1.4 संचार:** पैकेजिंग में इसके निर्माता का नाम, उत्पाद का नाम, शब्द और उपयोग, निर्माण की तिथि, सर्वश्रेष्ठ से पहले बहुत सारी जानकारी होती है। पोषण संबंधी जानकारी इस प्रकार उपभोक्ता को अधिक सूचित करने में मदद करती है।

6.2 पैकेजिंग के प्रकार:

6.2.1 प्राथमिक पैकेजिंग:

- प्राथिमक पैकेज वे पैकेज होते हैं जो सीधे खाद्य उत्पादों के संपर्क में आते हैं। यह खाद्य उत्पादों को सुरक्षा की पहली या प्रारंभिक परत प्रदान करता है।
- उदाहरण धातु के डिब्बे, टी बैग, पेपरबोर्ड कार्टन, कांच की बोतलें और प्लास्टिक के पाउच।

6.2.2 माध्यमिक पैकेज:

- माध्यिमक पैकेज वे पैकेज होते हैं जो प्राथिमक पैकेज को घेरते हैं या उसमें शामिल होते हैं।
- यह आगे भी होता था समूह प्राथिमक पैकेज एक साथ।
- वाहक के रूप में कार्य करते हैं और कई बार प्राथमिक पैकेज के प्रदर्शन के लिए भी उपयोग किया जाता है।
- उदाहरणः कोरूगेटिड केस तथा, बक्से।

6.2.3 तृतीयक पैकेज:

- इसमें माध्यमिक पैकेज की संख्या एक साथ होती है।
- मुख्य रूप से खाद्य उत्पादों के थोक हैंडलिंग के लिए उपयोग किया जाता है।
- उदाहरणः स्ट्रैच रैप्ड पैलेट

6.2.4 क्वार्टनरी पैकेज:

- चतुष्कोणीय पैकेज मुख्य रूप से उपयोग किया जाता है तृतीयक संकुल को संभालना।
- इसमें आम तौर पर एक धातु कंटेनर शामिल होता है जिसे जहाजों, ट्रेनों से या उससे स्थानांतिरत किया जा सकता है।

6.3 उरद उत्पादों की पैकेजिंग:

उड़द की फिलयों और उसके उत्पादों की पैकेजिंग मुख्य रूप से खाद्य उत्पादों को बाहर के वातावरण से बचाने के लिए की जाती है, विशेष रूप से प्रक्रिया पूरी होने के बाद तािक उत्पाद स्वाद, सुगंध, ताजगी को लंबे समय तक बरकरार रख सकें। उनके शेल्फ जीवन को बढ़ाने के लिए पैकेजिंग भी की जाती है। उड़द बीन उत्पादों को विस्तृत श्रृंखला सामग्री में पैक किया जा सकता है जिसमें एलडीपीई, पीईटी, ग्लास, एल्यूमीनियम आदि शामिल हैं।

6.3.1 लो घनत्व पोलीथाईलीन (एलडीपीई):

लो घनत्व वाली पॉलीथीन गर्मी सील करने योग्य, निष्क्रिय, गंध मुक्त और गर्म होने पर सिकुड़ जाती है। यह नमी के अवरोध के रूप में कार्य करता है और इसमें उच्च गैस पारगम्यता, तेलों की संवेदनशीलता और खराब गंध प्रतिरोध होता है। यह कम खर्चीला है, इसलिए व्यापक रूप से उपयोग किया जाता है। एलडीपीई की महान विशेषताओं में से एक अच्छी, कठिन, तरल-तंग सील देने के लिए खुद को वेल्डेड करने की क्षमता है।

6.3.2 पॉलीथीन टेरिफ्थेलैट (पीईटी):

पीईटी को उड़ाने या कास्टिंग करके फिल्म में बनाया जा सकता है। यह ढाला जा सकता है, इंजेक्शन ढाला, झाग, कागज पर लेपित बाहर निकालना और थर्मोफॉर्मिंग के लिए शीट के रूप में बाहर निकाला जा सकता है। पीईटी का पिघलने बिंदु पीपी से अधिक है जो 260°C के आसपास है और विनिर्माण स्थितियों के कारण 180°C से नीचे नहीं हटता है। इस प्रकार पीईटी उच्च तापमान अनुप्रयोगों के लिए आदर्श है। पीईटी भी कम तापमान (-100°C) के लिए लचीला है। यह ऑक्सीजन और जल वाष्प के अच्छे अवरोध के रूप में भी कार्य करता है।

6.3.3 ग्लास:

अब पैकेजिंग के लिए एक दिन के ग्लास कंटेनर का भी उपयोग किया गया है। इसके निम्नलिखित फायदे हैं:

- नमी और गैसों के लिए मजबूत अवरोध के रूप में कार्य करते हैं।
- अवांछित गंध और सूक्ष्म विकास को रोकें।
- खाद्य उत्पादों के साथ प्रतिक्रिया न करें।
- गर्मी प्रसंस्करण के लिए उपयुक्त जब hermetically सील है
- कांच फिर से उपयोग करने योग्य और पुन: प्रयोज्य हैं
- वे सामग्री प्रदर्शित करने के लिए पारदर्शी हैं
- वे कठोर होते हैं, बिना कंटेनर क्षित के स्टैकिंग की अनुमित देने के लिए।

कांच के नुकसान में शामिल हैं:

- ग्लास में उच्च वजन होता है जो परिवहन लागत को बढ़ाता है।
- अन्य सामग्रियों की तुलना में थर्मल शॉक के लिए बहुत अधिक नाजुक और कम प्रतिरोध।
- कांच के छींटे या टुकड़े से संभावित गंभीर खतरे है।

6.3.4 एल्यूमीनियम:

एल्यूमीनियम का उपयोग इसकी अत्यधिक निंदनीय गुणों के कारण पैकेजिंग के लिए किया जाता है: इसे आसानी से पतली शीट में बदला या पैक किया जा सकता है। एल्यूमीनियम पन्नी प्रकाश और ऑक्सीजन गंध और स्वाद, नमी और कीटाणुओं के लिए कुल अवरोध के रूप में कार्य करती है, और इसलिए इसका उपयोग भोजन और दवा पैकेजिंग में व्यापक रूप से किया जाता है, जिसमें लॉन्ग लाइफ पैक शामिल हैं।

6.4 पैकेजिंग में कुछ में आधुनिक विकास:

6.4.1 एस्पेक्टिक पैकेजिंग

एसेप्टिक पैकेजिंग व्यावसायिक रूप से स्टेराइल उत्पाद के साथ स्टेराइल कंटेनरों को भरना और सील करना है तािक रीइन्फेक्शन को रोका जा सके; अर्थात उन्हें हमें हरमैटिकली सील किया जाए। सड़न रोकने वाली पैकेजिंग के अनुप्रयोग में शािमल हैं: पूर्व-निष्फल और स्टेराइल उत्पाद की पैकेजिंग और सूक्ष्मजीवों द्वारा संक्रमण से बचने के लिए गैर-स्टेराइल उत्पाद की पैकेजिंग।

सड़न रोकने वाला पैकेजिंग के उपयोग के प्रमुख कारण हैं: उच्च तापमान- कम समय (HTST) नसबंदी प्रक्रियाओं का लाभ उठाना, ताकि उन कंटेनरों का उपयोग किया जा सके जो इन-पैकेज नसबंदी के लिए अनुपयुक्त हैं और सामान्य रूप से उत्पादों के शेल्फ जीवन का विस्तार करने के लिए तापमान।

6.4.2. सक्रिय और बुद्धिमान पैकेजिंग

सक्रिय पैकेजिंग को पैकेजिंग के उस रूप में परिभाषित किया गया है जिसमें सहायक घटक जानबूझकर या पैकेज सामग्री के प्रदर्शन को बढ़ाने के लिए पैकेजिंग सामग्री या पैकेज हेडस्पेस पर शामिल कर लिए जाते हैं।

बुद्धिमान पैकेजिंगको पैकेज के रूप में परिभाषित किया गया है जिसमें पैकेज के इतिहास और / या भोजन की गुणवत्ता के बारे में जानकारी प्रदान करने के लिए एक बाहरी या आंतरिक संकेतक होता है। पाउच और पैड सक्रिय पैकेजिंग के सबसे व्यापक रूप से इस्तेमाल किए जाने वाले रूप हैं और उनके द्वारा किए जाने वाले विभिन्न कार्यों की चर्चा निम्नलिखित में की जाती है:

- ऑक्सीजन अवशोषक
- कार्बन डाइऑक्साइड अवशोषक या उत्सर्जक
- एथिलीन अवशोषक
- इथेनॉल उत्सर्जक
- नमी को अवशोषित करने वाला

6.4.3 संशोधित एटमॉस्फियर पैकेजिंग (MAP)

एमएपी को खाद्य पदार्थों की पैकेजिंग के रूप में परिभाषित किया जा सकता है, जहां पैकेट के अंदर का एटमॉस्फियर खाद्य उत्पादों के शेल्फ जीवन को बढ़ाने के लिए संशोधित किया गया है। इसमें सक्रिय संशोधन या निष्क्रिय संशोधन शामिल है। सक्रिय संशोधन में गैसों के एक नियंत्रित, वांछित मिश्रण के साथ हवा को विस्थापित किया जाता है, और इस प्रक्रिया को गैस फ्लिशंग कहा जाता है। निष्क्रिय संशोधन श्वसन से और भोजन से जुड़े सूक्ष्मजीवों के मेटाबॉलिज्म के कारण होता है। पैकेज संरचना में आम तौर पर एक बहुलक फिल्म शामिल होती है, और इसलिए फिल्म के माध्यम से गैसों का पारगमन भी विकसित होने वाले वातावरण की संरचना को प्रभावित करता है।

6.5 लेबलिंग

लेबलिंग पैकेजिंग के संचार कार्य को निष्पादित करता है, उपभोक्ता को पोषण सामग्री, शुद्ध वजन, उत्पाद के उपयोग इत्यादि के बारे में जानकारी देता है। लेबलिंग विशिष्ट ब्रांडिंग के माध्यम से एक मूक विक्रेता के रूप में कार्य करता है, साथ ही यूनिवर्सल उत्पाद कोड (यूपीसी) के माध्यम से चेक-आउट पर पहचान की सुविधा प्रदान करता है।

विभिन्न प्रकार के लेबलिंग जो इस प्रकार हैं:

6.5.1ग्लूड-ऑन लेबल: ये सबसे सरल प्रकार हैं और इसमें शीट सामग्री (आमतौर पर कागज) शामिल है, जिसे मुद्रित और आकार में कटौती की गई है। वे चिपकने के साथ पैकेज से जुड़े होते हैं, जो या तो आवेदन के समय, या निर्माण के समय लागू किया जाता है, जिस स्थिति में आवेदन से तुरंत पहले नमी के साथ चिपकने वाला सक्रिय होता है।

6.5.2 ह स्वयं चिपकने वाला (**दबाव-संवेदनशील**) **लेबल:** इन्हें कागज, प्लास्टिक या एल्युमिनियम फॉयल से लैमिनेटेड पेपर या प्लास्टिक से बनाया जा सकता है, और हो सकता है उत्पादित सामग्री की एक विस्तृत श्रृंखला का पालन करने के लिए।

6.5.3 इन-लेबल लेबल: यह पेशकश करता है कागज से बने लेबल की तुलना में गर्मी, नमी और रसायन के लिए बेहतर प्रतिरोध। फिल्म लेबल के साथ रीसाइक्लिंग लाभ भी हैं। IML सामग्री कंटेनर निर्माण प्रक्रिया का

सामना करने में सक्षम होना चाहिए। ब्लो मोल्डिंग के दौरान उत्पन्न गर्मी, अधिकांश स्याही को चुनौती देती है क्योंकि पिगमेंट बदल सकते हैं।

6.5.4 स्लीवलेबल: कंटेनरों की एक विस्तृत श्रृंखला को कांच की बोतलों, प्लास्टिक की बोतलों और धातु के डिब्बे सहित लेबल किया जा सकता है। स्लीव लेबल कौनटूर्स में सिकुड़ते या फैलते हैं, परिवर्तनशील ज्यामिति में प्रवेश करते हैं और अनियमित विशेषताओं के अनुरूप होते हैं।

6.5.5 होलोग्राफिक लेबल: फूड पैकेजिंग में होलोग्राफिक लेबल का बड़ा महत्व होता है तथा क्योंकि इसका प्रयोग मार्केटिंग, सुरक्षा, एंटी काउंटर फीटिंग तथा ब्रांड संरक्षण के क्षेत्र में होता भूतल राहत और मात्रा होलोग्राम का सबसे आम प्रकार है। सतह राहत होलोग्राम एक विशेषता इंद्रधनुष के रंग का पैटर्न या छवि प्रदर्शित करते हैं। वॉल्यूम, या प्रतिबिंब, होलोग्राम सतह राहत होलोग्राम के लिए एक बहुत अलग उपस्थिति है और आमतौर पर प्रमाणीकरण के लिए उपयोग किया जाता है।

अध्याय 7

7.1 भुजिया के लिए एफएसएसएआई (FSSAI) पंजीकरण

SL.NO	ADDITIVES	MAXIMUM LEVEL
A	Antioxidants	
1.	Tocopherol	GMP
2	Lecithin	GMP
3	Butylated hydroxy anisole (BHA)	200ppm
4	Tertiary butyl hydro quinone (TBHQ)	200ppm
В	Emulsifier/ Stabiliser	
1	Methyl cellulose	0.5%
2	Carboxymethyl cellulose	0.5%

7.2 एफएसएसएआई (FSSAI) पापड़ के लिए पंजीकरण

एफएसएसएआई के मानकों के अनुसार, पापड़ का अर्थ है दलहनी दाल के आटे से बने उत्पाद आधारित दालें। पापड़ के लिए एफएसएसएआई मानक हैं:

Moisture	Not more than 14.0 per cent by weight	
Foreign matter -Extraneous Matter	Not more than 1 per cent. by weight of which	
	not more than 0.25 per cent. by weight shall	
	be mineral matter and not more than 0.10 per	
	cent by weight shall be impurities of animal	
	origin	
Other edible grains	Not more than 4 per cent by weight.	
Damaged grains	Not more than 5 per cent by weight	
Weevilled grains	Not more than 6 per cent by count.	
Uric acid	Not more than 100 mg per kg	
Aflatoxin	Not more than 30 micrograms per kilogram	

It is also Provided that the total of foreign matter, other edible grains and damaged grains shall not exceed 9 per cent by weight.

7.3 खाद्य निर्माता / प्रोसेसर / हैन्डलर के लिए स्वच्छता और स्वास्थ्य संबंधी आवश्यकताएँ

वह स्थान जहाँ भोजन निर्मित, संसाधित या संभाला जाता है, निम्नलिखित आवश्यकताओं का पालन करेगा:

- 1. परिसर एक सैनिटरी जगह में स्थित होगा और गंदे वातावरण से मुक्त होगा और समग्र स्वच्छ वातावरण बनाए रखेगा। सभी नई इकाइयां पर्यावरण प्रदूषित क्षेत्रों से दूर स्थापित होनी चाहिए।
- 2. विनिर्माण के लिए खाद्य व्यवसाय करने के लिए परिसर में समग्र स्वच्छ वातावरण बनाए रखने के लिए विनिर्माण और भंडारण के लिए पर्याप्त जगह होनी चाहिए।
- 3. परिसर साफ, पर्याप्त रोशनी और हवादार और आवागमन के लिए पर्याप्त खाली स्थान होगा।
- 4. फर्श, छत और दीवारों को एक अच्छी स्थिति में बनाए रखा जाना चाहिए। वे चिकनी और आसानी से साफ करने के लिए आसान होना चाहिए।
- 5. एक प्रभावी कीटाणुनाशक के साथ फर्श और झालर वाली दीवारों को आवश्यकता के अनुसार धोया जाएगा ताकि परिसर को सभी कीड़ों से मुक्त रखा जा सके। व्यवसाय के संचालन के दौरान कोई छिड़काव नहीं किया जाएगा, लेकिन इसके बजाय परिसर में मारने के लिए फ्लाई स्वाट्स / फ्लैप का उपयोग किया जाना चाहिए। विंडोज, दरवाजे और अन्य उद्घाटन को शुद्ध या स्क्रीन के साथ फिट किया जाएगा, जैसा कि आधार कीट मुक्त बनाने के लिए उपयुक्त है। निर्माण में उपयोग किया जाने वाला पानी पीने योग्य होगा और यदि आवश्यक हो तो पानी की रासायनिक और बैक्टीरियोलॉजिकल जांच किसी भी मान्यता प्राप्त प्रयोगशाला में नियमित रूप से की जाएगी।
- 6. परिसर में पीने योग्य पानी की निरंतर आपूर्ति सुनिश्चित की जाएगी। आंतरायिक जल आपूर्ति के मामले में, भोजन या धुलाई में उपयोग किए जाने वाले पानी की पर्याप्त भंडारण व्यवस्था की जाएगी।
- 7. उपकरण और मशीनरी ऐसे डिजाइन की होनी चाहिए जो आसानी से साफ हो सके। कंटेनर, टेबल, मशीनरी के काम करने वाले हिस्सों आदि की सफाई की व्यवस्था की जानी चाहिए।

- 8. भोजन की तैयारी, पैकिंग या भंडारण में (कॉपर या पीतल के जहाजों में उचित अस्तर का होना) कोई भी ऐसा बर्तन, कंटेनर या अन्य उपकरण इस्तेमाल नहीं होना चाहिए, जिनके उपयोग से धातु के दूषित होने की संभावना हो।
- 9. सांचे / फफूंदी और संक्रमण से विकास से मुक्ति सुनिश्चित करने के लिए सभी उपकरणों को व्यवसाय के करीब साफ, धोया, सुखाया और इकट्ठा किया जाना चाहिए।
- 10. उचित निरीक्षण की अनुमति देने के लिए सभी उपकरणों को दीवारों से दूर रखा जाएगा।
- 11. कुशल जल निकासी प्रणाली होनी चाहिए और अपशिष्ट के निपटान के लिए पर्याप्त प्रावधान होंगे।
- 12. प्रसंस्करण और तैयारी में काम करने वाले कर्मचारी साफ एप्रन, हाथ के दस्ताने, और सिर पहनने का उपयोग करेंगे।
- 13. संक्रामक रोगों से पीड़ित व्यक्तियों को काम करने की अनुमित नहीं होगी। कोई भी घाव हर समय कवर रहेगा और व्यक्ति को भोजन के सीधे संपर्क में नहीं आने देना चाहिए।
- 14. सभी खाद्य संचालकों ने शौचालय का उपयोग करने के बाद काम शुरू करने से पहले और हर बार अपनी उंगली के नाखूनों की छंटनी, सफाई और अपने हाथ साबुन, या डिटर्जेंट और पानी से धोए। शरीर के अंगों को खरोंचने, भोजन से निपटने की प्रक्रियाओं के दौरान बालों से बचा जाएगा।
- 15. सभी खाद्य संचालकों को पहनने, झूठे नाखून या अन्य वस्तुओं या ढीले आभूषणों से बचना चाहिए जो भोजन में गिर सकते हैं और उनके चेहरे या बालों को छूने से भी बच सकते हैं।
- 16. भोजन ग्रहण करना, चबाना, धूम्रपान, थूकना और नाक बहना विशेष रूप से भोजन को संभालने के दौरान परिसर के भीतर निषिद्ध होगा।
- 17. बिक्री के लिए संग्रहीत या उपयोग किए जाने वाले सभी लेख खपत के लिए फिट होंगे और संदूषण से बचने के लिए उचित कवर होगा।
- 18. खाद्य पदार्थों के परिवहन के लिए उपयोग किए जाने वाले वाहनों को अच्छी मरम्मत में रखा जाना चाहिए और उन्हें साफ रखा जाना चाहिए।

- 19. खाद्य पदार्थ परिवहन के दौरान या कंटेनरों में आवश्यक तापमान बनाए रखेंगे।
- 20. कीटनाशक / कीटाणुनाशक अलग-अलग रखे जाएंगे और `खाद्य विनिर्माण / भंडारण / हैंडलिंग क्षेत्रों से दूर रखे जाएंगे।